## Speaker:

## Affiliation:

Departement d'Informatique

Universite Libre de Bruxelles

Campus de la Plaine

CP 212 - 1050 Bruxelles

Belgium

## Webpage:

## Time:

## Venue:

- D-405 (D-Block Seminar Room)

## Organisers:

Any two-way finite state automaton is equivalent to some one-way finite state automaton. This well-known result, shown by Rabin and Scott and independently by Shepherdson, states that two-way finite state automata (even non-deterministic) characterize the class of regular languages. It is also known that this result does not extend to finite string transductions: (deterministic) two-way finite state transducers strictly extend the expressive power of (functional) one-way transducers. In particular deterministic two-way transducers capture exactly the class of MSO-transductions of finite strings. In this talk, we address the following definability problem: given a function defined by a two-way finite state transducer, is it definable by a one-way finite state transducer? By extending Rabin and Scott's proof to transductions, we show that this problem is decidable. Our procedure builds a one-way transducer, which is equivalent to the two-way transducer, whenever one exists.