Instructor:
Semester:
- 2017 Autumn/Monsoon (Aug - Dec)
Syllabus:
1. Refresher on topology (open sets, compactness, connectedness,
continuity, metric spaces), refresher on Riemann integration.
2. Measure theory: abstract measure spaces, outer measure,
Caratheodory theorem, Radon-Nikodym theorem, Lebesgue integration,
convergence theorems.
3. Measures invariant under group action, Haar measure
4. L^p spaces, Hilbert spaces, Banach spaces, Fourier transforms (time
permitting).
5. Other topics of interest if time permits.
Textbook (available online):
Royden-Fitzpatrick: Real Analysis
References (available online):
1. Rudin: Principles of Mathematical Analysis
2. Munkres: Topology
3. Rudin: Real and Complex Analysis
4. Halmos: Measure theory.
5. Rudin: Functional Analysis